124 research outputs found

    Detecting Large Concept Extensions for Conceptual Analysis

    Full text link
    When performing a conceptual analysis of a concept, philosophers are interested in all forms of expression of a concept in a text---be it direct or indirect, explicit or implicit. In this paper, we experiment with topic-based methods of automating the detection of concept expressions in order to facilitate philosophical conceptual analysis. We propose six methods based on LDA, and evaluate them on a new corpus of court decision that we had annotated by experts and non-experts. Our results indicate that these methods can yield important improvements over the keyword heuristic, which is often used as a concept detection heuristic in many contexts. While more work remains to be done, this indicates that detecting concepts through topics can serve as a general-purpose method for at least some forms of concept expression that are not captured using naive keyword approaches

    Reliability, Agreement and Minimal Detectable Change of the Timed Up & Go and the 10-Meter Walk Tests in Older Patients with COPD

    Get PDF
    This study aimed to determine the interrater and intrarater reliability and agreement and the minimal detectable change (MDC) of the Timed Up & Go (TUG) test and the 10-Meter Walk Test (10MWT) in older patients with Chronic Obstructive Pulmonary Disease (COPD). Patients (≥ 60 years old) living in the community were asked to attend 2 sessions with 48-72-hour interval. In session 1, participants completed the TUG and 10MWT twice (2 trials) and were assessed by 2 raters. In session 2, they repeated the tests twice and were assessed by 1 rater. Interrater and intrarater reliability were calculated for the exact scores (using data from trial 1) and mean scores (mean of 2 trials) using Intraclass Correlation Coefficients (ICC2,1 and ICC2,2, respectively). Interrater and intrarater agreement were explored with the Bland & Altman method. The MDC95 was calculated from the standard error of measurement. Sixty participants (72.43 ± 6.90 years old) completed session 1 and 41 participants session 2. Excellent ICC values were found for the TUG test (interrater: ICC2,1 = 0.997 ICC2,2 = 0.999; intrarater: ICC2,1 = 0.921 ICC2,2 = 0.964) and 10MWT (interrater: ICC2,1 = 0.992 ICC2,2 = 0.997; intrarater: ICC2,1 = 0.903 ICC2,2 = 0.946). Good interrater and intrarater agreement was also found for both tests. The MDC95 was 2.68 s and 1.84 s for the TUG and 0.40 m/s and 0.30 m/s for the 10MWT considering the exact and mean scores, respectively. Findings suggest that the TUG test and the 10MWT are reliable and have acceptable measurement error. Therefore, these measures may be used to assess functional balance (TUG) and gait (10MWT) deficits in older patients with COPD.publishe

    Blurred digital mammography images : an analysis of technical recall and observer detection performance

    Get PDF
    Background: Blurred images in Full Field Digital Mammography (FFDM) are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. Objectives: This study assesses the visual detection of blurring on a 2.3 megapixel (MP) monitor and a 5 MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5 MP reporting grade monitor. Method: Twenty-eight observers assessed 120 images for blurring; 20 had no blurring present whilst 100 had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. Chi-squared (X2) tests were used to test whether significant differences in blurring detection existed between 2.3 and 5 MP monitors. Results: The technical recall rate for 2.3 and 5 MP monitors are 20.3 % and 9.1% respectively. Angular size for 0.2 to 1 mm motion varied from 55 to 275 arc seconds. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2 mm simulated motion, there was no significant difference X2 (1, N=1095) =1.61, p=0.20) in blurring detection between the 2.3 and 5 MP monitors. Conclusion: According to this study monitors equal or below 2.3 MP are not suitable for technical review of FFDM images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring. Key words: Simulated motion; technical recall; monitor resolution; observer standard; blurring detectio

    Fundamental movement skills are more than run, throw and catch: The role of stability skills.

    Get PDF
    Introduction In motor development literature fundamental movement skills are divided into three constructs: locomotive, object control and stability skills. Most fundamental movement skills research has focused on children's competency in locomotor and object control skills. The first aim of this study was to validate a test battery to assess the construct of stability skills, in children aged 6 to 10 (M age = 8.2, SD = 1.2). Secondly we assessed how the stability skills construct fitted into a model of fundamental movement skill. Method The Delphi method was used to select the stability skill battery. Confirmatory factor analysis (CFA) was used to assess if the skills loaded onto the same construct and a new model of FMS was developed using structural equation modelling. Results Three postural control tasks were selected (the log roll, rock and back support) because they had good face and content validity. These skills also demonstrated good predictive validity with gymnasts scoring significantly better than children without gymnastic training and children from a high SES school performing better than those from a mid and low SES schools and the mid SES children scored better than the low SES children (all p < .05). Inter rater reliability tests were excellent for all three skills (ICC = 0.81, 0.87, 0.87) as was test retest reliability (ICC 0.87-0.95). CFA provided good construct validity, and structural equation modelling revealed stability skills to be an independent factor in an overall FMS model which included locomotor (r = .88), object control (r = .76) and stability skills (r = .81). Discussion This study provides a rationale for the inclusion of stability skills in FMS assessment. The stability skills could be used alongside other FMS assessment tools to provide a holistic assessment of children's fundamental movement skills. Copyright

    The functional cancer map: A systems-level synopsis of genetic deregulation in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer cells are characterized by massive dysegulation of physiological cell functions with considerable disruption of transcriptional regulation. Genome-wide transcriptome profiling can be utilized for early detection and molecular classification of cancers. Accurate discrimination of functionally different tumor types may help to guide selection of targeted therapy in translational research. Concise grouping of tumor types in cancer maps according to their molecular profile may further be helpful for the development of new therapeutic modalities or open new avenues for already established therapies.</p> <p>Methods</p> <p>Complete available human tumor data of the Stanford Microarray Database was downloaded and filtered for relevance, adequacy and reliability. A total of 649 tumor samples from more than 1400 experiments and 58 different tissues were analyzed. Next, a method to score deregulation of KEGG pathway maps in different tumor entities was established, which was then used to convert hundreds of gene expression profiles into corresponding tumor-specific pathway activity profiles. Based on the latter, we defined a measure for functional similarity between tumor entities, which yielded to phylogeny of tumors.</p> <p>Results</p> <p>We provide a comprehensive, easy-to-interpret functional cancer map that characterizes tumor types with respect to their biological and functional behavior. Consistently, multiple pathways commonly associated with tumor progression were revealed as common features in the majority of the tumors. However, several pathways previously not linked to carcinogenesis were identified in multiple cancers suggesting an essential role of these pathways in cancer biology. Among these pathways were 'ECM-receptor interaction', 'Complement and Coagulation cascades', and 'PPAR signaling pathway'.</p> <p>Conclusion</p> <p>The functional cancer map provides a systematic view on molecular similarities across different cancers by comparing tumors on the level of pathway activity. This work resulted in identification of novel superimposed functional pathways potentially linked to cancer biology. Therefore, our work may serve as a starting point for rationalizing combination of tumor therapeutics as well as for expanding the application of well-established targeted tumor therapies.</p

    Citizen crowds and experts: observer variability in image-based plant phenotyping

    Get PDF
    Background:Image-based plant phenotyping has become a powerful tool in unravelling genotype–environment interactions. The utilization of image analysis and machine learning have become paramount in extracting data stemming from phenotyping experiments. Yet we rely on observer (a human expert) input to perform the phenotyping process. We assume such input to be a ‘gold-standard’ and use it to evaluate software and algorithms and to train learning-based algorithms. However, we should consider whether any variability among experienced and non-experienced (including plain citizens) observers exists. Here we design a study that measures such variability in an annotation task of an integer-quantifiable phenotype: the leaf count.Results:We compare several experienced and non-experienced observers in annotating leaf counts in images of Arabidopsis Thaliana to measure intra- and inter-observer variability in a controlled study using specially designed annotation tools but also citizens using a distributed citizen-powered web-based platform. In the controlled study observers counted leaves by looking at top-view images, which were taken with low and high resolution optics. We assessed whether the utilization of tools specifically designed for this task can help to reduce such variability. We found that the presence of tools helps to reduce intra-observer variability, and that although intra- and inter-observer variability is present it does not have any effect on longitudinal leaf count trend statistical assessments. We compared the variability of citizen provided annotations (from the web-based platform) and found that plain citizens can provide statistically accurate leaf counts. We also compared a recent machine-learning based leaf counting algorithm and found that while close in performance it is still not within inter-observer variability.Conclusions:While expertise of the observer plays a role, if sufficient statistical power is present, a collection of non-experienced users and even citizens can be included in image-based phenotyping annotation tasks as long they are suitably designed. We hope with these findings that we can re-evaluate the expectations that we have from automated algorithms: as long as they perform within observer variability they can be considered a suitable alternative. In addition, we hope to invigorate an interest in introducing suitably designed tasks on citizen powered platforms not only to obtain useful information (for research) but to help engage the public in this societal important problem
    corecore